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A simple transformation of the dependent variable in the radiative transfer equation 
is described which eliminates most numerical solution problems caused by rapidly 
varying (spatially or temporally) sources. Numerical results for several problems illustrate 
the improved accuracy obtained with the transformed equation. 

The numerical calculation of radiative transfer in two-space dimensions is of 
interest in connection with problems in such diverse subject areas as astrophysics 
(e.g., rapidly rotating and pulsating stars, solar active areas), re-entry physics, and 
meteorology (e.g., “greenhouse” effect due to point source of pollution in a strati- 
fied atmosphere). An unpleasant feature of many problems involving transfer of 
thermal radiation can be a source function which has a large range of variation in 
a relatively small spatial region, making it necessary to use extremely fine zoning 
for numerical solutions with standard transport codes. A simple transformation of 
the dependent variable in the transport equation can be made which eliminates 
most of the rapidly varying source problem. 

Let Z,(R, fi) = radiation intensity at point R with directions in &, S, = source 

function (isotropic) at R. The steady-state transfer equation can be written [l] 

(0 * v + u”a + u,S) Z” = S” + j a,@2 * 0) Z”(Q) dsz’. 

Here (T,~ = absorption coefficient/cm3 (includes effect of stimulated emission), 
0” s = scattering cross section/cm3. If the new variable 

Y” = a,az*IS” 

is introduced, the transfer equation becomes 

~2 - VP + [d + f=j . V log(S/o”)]Y = ua + s as@ . &“) Y@‘) dL”, 

* Work performed under the auspices of the U. S. Atomic Energy Commission. 
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which still looks like the transport equation, where, however, the total cross 
section has been replaced by at + 0 * V log(S/a”), and the source term replaced 
by ua. (u” = C+ + us. The subscript v has been omitted.) A standard transport 
code with minor modification can be used to solve the transformed equation. 

In problems where S,/ uua and I, have large ranges of variation and the radiation 
and source are strongly coupled, U, will be much more slowly varying. (The 
transport equation describes the approach of ul, to its equilibrium value: Y” -+ 1.) 
The improved accuracy which results from numerical solution of the transformed 
equation is due, of course, to the fact that fewer terms of the Taylor expansion are 
required to represent the slowly varying variable Y to within a specified accuracy 
PI. 

Numerical results for Sample 1-D problems are described below. The method 
is not limited to 1-D calculations, however. The results demonstrate that it is 
possible to get reasonably accurate answers for cases with rapidly varying sources 
using relatively coarse zonings, which would be expected to represent an especially 
important advantage for calculations in two space dimensions. 

The transformation described here can also be applied to “variable Eddington 
factor” [3] approximations to the transport equation [2]. 

x=40x 

FIG. 1. Problem I. Slab (0 < x/h < 40) with isotropic source function S(x) = exp(-0.2x/A), 
illuminated on left with angular distribution Z&L) (0 < p). 
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- EXACT SOLUTION 

x TWOTRAN -“A” 

0 TWOTRAN -“B” 

+ TWOTRAN -“C” 

; 
1 

FIG. 2. Problem I. Results of calculations with three versions of TWOTRAN (see text) 
with AX = 10X = A Y are compared with the exact solution for the forward current, 

(The vacuum region, 40 < x/X < 60, was also zoned.) 



TRANSFORMATION OF RADIATIVE TRANSFER EQUATION 423 

NUMERICAL RESULTS 

Problem I featured a slab with constant mean free path for absorption and a 
distributed source S = e-uxlh. (X = l/+, CJ~ = 0.) The slab is illuminated on the 
left with radiation with angular distribution 

Mi4 = (1 - q-e1 (0 < PI, 

and radiates into a vacuum on the right (Fig. 1). Figures 2, 3, and 4 show results of 
calculations of this 1-D problem. Three versions of the X-Y TWOTRAN code 
developed by Lathrop and Brinkley [4] for numerical solution of the steady-state 

IC 

I 

FIG. 3. Problem I. 

Absorption = f J’ W, PI 4. 
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FIG. 4. Problem I. Backward current. 

transport equation in two space dimensions were used. Tn order to run this 1-D 
problem with the 2-D code a flat distribution in the y direction was assumed [5]. 
Results labeled “A” were obtained using the standard version of TWOTRAN 
with the “strictly positive weighted diamond” difference scheme. "B" indicates 
results obtained with the standard version and the “weighted diamond with fix-up” 
scheme.1 The latter version of TWOTRAN was modified to solve the transformed 
Eq. (1) as above (‘C”). The exact solution of the problem is also shown. 

Problem II calculated flow of 11-12 keV photons through a slab of iron 
(0 < x < 1.2 cm) which has a Mime problem-like temperature distribution and a 
realistic material density distribution (25 < ua < 160 cm-l) (i.e., temperature and 
density distributions taken from a computation with a standard radiation hydro- 

1 See Appendix for description of TWOTRAN difference schemes. 
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dynamics code [3] are assumed to be given data). Local thermodynamic equilibrium 
is assumed, with source function [I] 

B, = Planck function = (2hv3/c2)[exp(hv/T) - 11-l. The iron slab is adjacent to an 
isothermal (T = 1.3 keV) scattering region (4 = 0.191 cm-l, -22 cm < x < 0) 
which is also zoned (dx = 1 cm) and which has a reflection boundary condition 
on the left (Fig. 5). 

Results for the forward current (Fig. 6) again show a significant improvement in 
accuracy for the modified TWOTRAN. 

Problem II was also computed using a time-dependent 1-D program (ONETRAN 
code)[6]. In this case the material density distribution is assumed independent of 
time, and the temperatures and radiation intensities are determined by numerical 
solution of the time-dependent transfer equation and the coupled energy equation 
m 

an(K PI = 
at c c ~ag(C p) 1 [Is - BBC3 d-i’ 

9 

= c c qzgV, pWg(T) + BogI 1 Vg - 1) ~22. 
(2) 

B 
An approximate equation of state for iron under these conditions was used: 

E&r, p) = 0.112pT1J25. (3) 

a&,? = 0.191 cm-’ 

CT;<< 0”’ 

T = 1.3 ksV 

SCATTERING IRON 

GAS SLAG 

0 1.2 cm 

X- 

FIG. 5. Problem II. A slab of hot mainly scattering gas is bounded on the left by a perfect 
reflector and on the right by an optically thick iron slab. A Milne problem-like temperature 
distribution T(x) and realistic density distribution p(x) with corresponding absorption coefficient 
q,“(X) are assumed in the iron. 
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FIG. 6. Forward current for Problem II (11 -C hv < 12 keV), calculated by standard (“weight- 
ed diamond with fix-up”) and modified versions of TWOTRAN (~7,). 

Sixteen photon energy groups were used. Only the penetration of the iron was 
calculated. It is assumed that the initially cold slab is illuminated on the left with 
radiation uniformly distributed in forward directions, corresponding to fixed 
temperature T,, . A straightforward Newton iteration procedure was used to solve 
Eqs. (2) and (3) for the new value of T. 
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MOD ONETRAN 

MOD ONETAAN 

x km) 

FIG. 7. Penetration of 1.2-cm iron slab by thermal radiation wave, as calculated by standard 
and modified versions of ONJZTRAN program (S,). 
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FIG. 8. Problem II. Forward current for photon goup 10 (10 < hr < 14 keV) at 
t = 0.54 x lo-*S (-steady-state) as calculated by standard and modified versions of ONETUN. 
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Figure 7 shows the approach to the steady-state temperature distribution, as 
calculated, using ONETRAN with an explicit difference scheme [7, 81. (The 
steady-state temperature distribution differs slightly from that assumed for the 
TWOTRAN calculation described above.) Figure 8 shows the steady-state forward 
current for the group 10 < hv < 14keV. Figures 7-9 show results obtained with 
the standard version of ONETRAN (fix = 0.02 cm, 60 zones, cLlt = 0.15 cm) 
and also with a version modified to integrate the transformed Eq. (1) with time 
derivative terms added [8] (dx = 0.1, 12 zones, cdt = 0.75; dx = 0.3,4 zones, 
cdt = 2.25). It was found that runs with the standard version using dx = 0.1 cm, 
cdt = 0.75 cm, and dx = 0.3 cm, cAt = 2.25 cm, became unstable after 50 and 
30 cycles, respectively. With 4 zones the rate of penetration calculated with the 
modified version is too fast. The first ONETRAN run (60 zones, standard version) 
required 2120 set of central-processor time on the CDC-6600 computer (1080 
problem cycles, including data loading, print-out and tape-dump times). The 
second run (12 zones, modified version) required 134 seconds CP time for 216 
problem cycles. The time for the first run could have been reduced somewhat if the 

ION 0.2 0.4 0.6 0.6 1.0 1.2 

x km) 

FIG. 9. Problem II. The lower curve is the photon number density We(x) = se1 P@(x, p)& 
for group 10 (10 < hv < 14 keV) in the iron slab. The upper curve slows the more slowly- 
varying variable N1o(x)/B1o[ T(x)]. 
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numerical integration had been cut off at the temperature wave front (i.e., instead 
of carrying all 60 zones each cycle). 

APPENDIX: DIFFERENCE SCHEMES USED BY 

TWOTRAN AND ONETRAN CODES 

I. TWOTRAN difference schemes. The following outline description is con- 
densed from Ref. [4]. 

The differenced form of the two dimensional (x, y) Boltzmann equation is 

b-4!+& - vw~4 + MA- - h>mJl + N/-G 4 = ah 7). (A-1) 

In this equation JJ~ , #L , &-, & , and Q!J denote, respectively, the particle flux on 
the right boundary, left boundary, top boundary, bottom boundary and within 
a space cell dx long and dy high. The direction cosines p and 7 are the x and y 
components of the direction of particle motion, CJ is the total macroscopic inter- 
action cross section, and S is the total source of particles in the system. Depending 
on the signs of p and v, the flux is known on some two adjacent boundaries of the 
cell and must be determined within the cell and on the other two boundaries. Two 
equations in addition to Eq. (A-l) are required for this determination. Suppose p 
and 7 are positive and that #L and #B are known. We then use the equations 

to complete the solution. In these equations, if a = b = l/2 we have the Diamond 
relations, and if a = b = 1 we have the step difference scheme. If a = l/2 then the 
relation is accurate to order (Ax)~, but if a = 1 then the truncation error is of order 
dx. The difficulty with the Diamond scheme is that, while accurate with respect to 
truncation error, it does not guarantee that # will be positive. 

However, if p, ‘I, Ax, Ay and 0 are given, then it is possible to pick a and b such 
that all coefficients are positive; and this is what is done in the TWOTRAN 
program. The optimum solution for a and b, in which a and b are greater than but 
as close as possible to one-half and in which both coefficients are positive, is an 
interesting problem in nonlinear programming. In TWOTRAN, values are ob- 
tained from the approximate solutions 

1 - a = /~Ay/(2qAx + odxdy), 1 - b = qA~/(2~Ay + uAyAx), 

subject to the further restriction that a and b be greater than or equal to one-half. 
In the Diamond scheme, extrapolations of the form #i+llZ = 2# - Z&-~,~ can 
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lead to negative values for fluxes. When sources are positive, we attempt to prevent 
negative fluxes by using a “set-flux-to-zero-and-correct” recipe. The logic of the 
set-to-zero fixup is as follows: If any one flux is negative, it is set to zero and the 
cell-centered flux $ is recomputed assuming that particular flux is zero. If this I$ 
should be negative, the fixup attempt is aborted. If not, the other two fluxes are 
re-extrapolated. If either one of these is negative, # is recomputed assuming two 
fluxes are negative. If this t,/~ is positive, the remaining flux is extrapolated. If it 
should be negative, then # is recomputed assuming all three boundary fluxes are 
zero (provided the total cross section is not zero). If any center Z/ is negative 
(implying a negative source or boundary flux) or if any fixup leads to a division 
by zero (e.g., in voids), the fixup attempt is aborted. One cannot exclude negative 
sources because the finite Legendre polynomial expansion of anisotropic scattering 
may produce negative numbers in particular directions. 

II. ONETRAN difference scheme. The following description is condensed 
from Ref. [6]. 

The following difference approximation to the g-th number of the set of [multi- 
group] equations [in slab geometry] is used by the ONETRAN code: 

1. *+l- * 
V ( At 1 

where group and some cell-centered subscripts have been deleted. The notation 
used above is as follows: 

v = group velocity 

At = time step size 

Pm = quadrature points 

WVt = quadrature weights 

ui = total cross section 

SA,% = scattering and fission sources computed from fluxes at j-th time level 

In order to solve Eqs. (10) for p+l given @, it is necessary to make some assump- 
tion concerning the shape of the flux over a mesh cell. The “diamond” relations 
are used in ONETRAN; these relations are given by 

(13) 

If the above relations are used to eliminate &z:,2 and @L&,2 in Eq. (lo), the 
following equation is obtained: 

( -& + 2 z + qj lp+1 = 2 z g”:,, + -& p + s;,i . 
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The above equation is used to determine @+l from Q@:,~ , &J& , and t,P for 
directions such that p,,, > 0. When pnz < 0 a similar equation is used to determine 
gj+l from $t& , ~$5,~ , and p. The diamond difference relations are then used 
to obtain the cell edge fluxes +#&Y:1,2 and I$~& for pm > 0 and #‘z.,,, and #:?:,,z for 
pnz < 0. 

As is well known, use of a diamond relation such as 

h!2 = wi - *i-1,2 

may give rise to negative fluxes. This is quite likely to occur whenever 

(Oi + (lldt)) AXi 

is large. In order to prevent negative fluxes, a set to zero Gxup is used. The cell edge 
fluxes /I$ (#& for pm < 0) are tested immediately after computation and are 
set to zero if negative. The cell-centered flux # j+l is then recomputed from Eqs. (10) 
and (13b) with z,$$ = 0 (g;‘:,, = 0 for pm < 0) in order to preserve neutron 
balance. The cell edge flux pz& is not tested for positivity, since in practice it is 
rarely negative. 
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